Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair.
نویسندگان
چکیده
PURPOSE To identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer and thus improve survival, we conducted an siRNA library screen in pancreatic cancer cells. We investigated PPP2R1A, a scaffolding subunit of protein phosphatase 2A (PP2A) as a lead radiosensitizing target. EXPERIMENTAL DESIGN We determined the effect of PP2A inhibition by genetic (PPP2R1A siRNA) and pharmacologic (LB100, a small molecule entering phase I clinical trials) approaches on radiosensitization of Panc-1 and MiaPaCa-2 pancreatic cancer cells both in vitro and in vivo. RESULTS PPP2R1A depletion by siRNA radiosensitized Panc-1 and MiaPaCa-2 cells, with radiation enhancement ratios of 1.4 (P < 0.05). Likewise, LB100 produced similar radiosensitization in pancreatic cancer cells, but minimal radiosensitization in normal small intestinal cells. Mechanistically, PPP2R1A siRNA or LB100 caused aberrant CDK1 activation, likely resulting from accumulation of the active forms of PLK1 (pPLK1 T210) and CDC25C (pCDC25C T130). Furthermore, LB100 inhibited radiation-induced Rad51 focus formation and homologous recombination repair (HRR), ultimately leading to persistent radiation-induced DNA damage, as reflected by γ-H2AX expression. Finally, we identified CDC25C as a key PP2A substrate involved in LB100-mediated radiosensitization as depletion of CDC25C partially reversed LB100-mediated radiosensitization. In a mouse xenograft model of human pancreatic cancer, LB100 produced significant radiosensitization with minimal weight loss. CONCLUSIONS Collectively, our data show that PP2A inhibition radiosensitizes pancreatic cancer both in vitro and in vivo via activation of CDC25C/CDK1 and inhibition of HRR, and provide proof-of-concept evidence that PP2A is a promising target for the improvement of local therapy in pancreatic cancer.
منابع مشابه
Cancer Therapy: Preclinical Inhibition of Protein Phosphatase 2A Radiosensitizes Pancreatic Cancers by Modulating CDC25C/CDK1 and Homologous Recombination Repair
Purpose: To identify targets whose inhibition may enhance the efficacy of chemoradiation in pancreatic cancer and thus improve survival, we conducted an siRNA library screen in pancreatic cancer cells. We investigated PPP2R1A, a scaffolding subunit of protein phosphatase 2A (PP2A) as a lead radiosensitizing
متن کاملSensitization of Pancreatic Cancers to Gemcitabine Chemoradiation by WEE1 Kinase Inhibition Depends on Homologous Recombination Repair12
To improve the efficacy of chemoradiation therapy for locally advanced pancreatic cancer and begin to establish patient selection criteria, we investigated the combination of the WEE1 inhibitor AZD1775 with gemcitabine-radiation in homologous recombination (HR) repair proficient and deficient pancreatic cancers. Sensitization to gemcitabine-radiation by AZD1775 was assessed in pancreatic cancer...
متن کاملClusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis
Clusterin (CLU) is a stress-activated molecular chaperone that confers treatment resistance to taxanes when highly expressed. While CLU inhibition potentiates activity of taxanes and other anti-cancer therapies in preclinical models, progression to treatment-resistant disease still occurs implicating additional compensatory survival mechanisms. Taxanes are believed to selectively target cells i...
متن کاملControl of mitotic exit by PP2A regulation of Cdc25C and Cdk1.
Inactivation of maturation-promoting factor [(MPF) Cdk1/Cyclin B] is a key event in the exit from mitosis. Although degradation of Cyclin B is important for MPF inactivation, recent studies indicate that Cdk1 phosphorylation and inactivation occur before Cyclin B degradation and, therefore, also may be important steps in the exit from mitosis. Cdk1 activity is controlled by the Cdc25C phosphata...
متن کاملInhibition of protein phosphatase 2A with a small molecule LB100 radiosensitizes nasopharyngeal carcinoma xenografts by inducing mitotic catastrophe and blocking DNA damage repair
Nasopharyngeal carcinoma (NPC), while uncommon worldwide, is a major health problem in China. Although local radiation and surgery provide good control of NPC, better treatments that permit reductions in radiation dosing are needed. Inhibition of protein phosphatase 2A (PP2A), a ubiquitous multifunctional enzyme with critical roles in cell cycle regulation and DNA-damage response, reportedly se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 19 16 شماره
صفحات -
تاریخ انتشار 2013